For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\0.9\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.14\\1.1\\0.38\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.292\\1.452\\0.628\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.5432\\2.137\\0.9584\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.9266\\3.348\\1.488\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.522\\5.369\\2.36\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}2.466\\8.664\\3.788\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}3.981\\13.99\\6.105\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}6.423\\22.59\\9.851\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}10.36\\36.46\\15.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}16.72\\58.85\\25.66\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\1.0\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.28\\2.53\\1.62\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.928\\5.192\\2.371\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.876\\9.181\\3.944\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.454\\15.25\\6.559\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}7.078\\24.79\\10.74\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}11.37\\40.05\\17.42\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}18.34\\64.61\\28.15\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}29.6\\104.2\\45.44\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}47.78\\168.2\\73.34\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}77.12\\271.4\\118.4\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 60\\5\end{bmatrix}$.