Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 170\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\0.0\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.21\\2.94\\1.56\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.059\\4.74\\2.052\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.733\\8.429\\3.988\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.101\\15.09\\7.047\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}5.542\\26.92\\12.58\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}9.887\\48.04\\22.45\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}17.64\\85.72\\40.06\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}31.49\\153.0\\71.48\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}56.19\\273.0\\127.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}100.3\\487.1\\227.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.6\\0.9\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.49\\4.35\\2.52\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.606\\7.569\\3.336\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.765\\13.37\\6.289\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.917\\23.93\\11.18\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}8.789\\42.69\\19.95\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.68\\76.18\\35.6\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}27.98\\135.9\\63.53\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}49.94\\242.6\\113.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}89.11\\432.9\\202.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}159.0\\772.6\\361.0\end{matrix}\right]\end{gather*}