Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 90\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\0.9\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.27\\1.1\\2.03\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.372\\1.954\\3.722\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}12.0\\3.652\\6.862\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}22.47\\6.841\\12.78\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}42.05\\12.81\\23.9\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}78.7\\23.97\\44.72\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}147.3\\44.86\\83.68\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}275.6\\83.96\\156.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}515.8\\157.1\\293.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}965.3\\294.0\\548.4\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\1.6\\0.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.67\\1.39\\2.73\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}7.626\\2.347\\4.68\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}14.48\\4.399\\8.38\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}27.16\\8.262\\15.49\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}50.84\\15.48\\28.91\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}95.15\\28.98\\54.06\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}178.1\\54.24\\101.2\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}333.2\\101.5\\189.3\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}623.6\\189.9\\354.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}1167.0\\355.5\\663.0\end{matrix}\right]\end{gather*}