Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.0\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.24\\0.42\\0.82\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.33\\1.078\\1.488\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.5038\\2.377\\3.121\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.8423\\5.066\\6.627\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.517\\10.67\\13.98\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}2.888\\22.36\\29.35\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}5.701\\46.72\\61.4\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}11.51\\97.5\\128.2\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}23.57\\203.3\\267.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}48.61\\423.6\\557.3\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\0.6\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.34\\2.13\\2.48\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.021\\5.357\\6.597\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.161\\12.18\\15.48\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.212\\26.55\\34.29\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}10.11\\56.65\\73.8\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}17.8\\119.5\\156.4\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}33.31\\250.8\\329.0\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}65.05\\524.5\\689.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}130.5\\1095.0\\1439.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}266.1\\2283.0\\3003.0\end{matrix}\right]\end{gather*}