Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 110\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\0.7\\1.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.3\\0.6\\1.75\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.655\\0.685\\2.065\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.067\\0.84\\2.548\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.574\\1.043\\3.168\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.203\\1.298\\3.941\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}3.987\\1.615\\4.905\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}4.962\\2.009\\6.104\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}6.175\\2.501\\7.597\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}7.685\\3.112\\9.454\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}9.564\\3.873\\11.77\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\0.3\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.54\\0.23\\0.67\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.676\\0.275\\0.833\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.8418\\0.3411\\1.036\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.048\\0.4244\\1.289\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.304\\0.5281\\1.604\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}1.623\\0.6572\\1.996\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}2.02\\0.8179\\2.485\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}2.513\\1.018\\3.092\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}3.128\\1.267\\3.848\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}3.893\\1.577\\4.789\end{matrix}\right]\end{gather*}