Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 120\\2\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.2\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.56\\1.87\\0.65\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.121\\3.011\\1.971\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.011\\5.349\\2.858\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.901\\8.993\\5.182\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}17.13\\15.47\\8.685\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}29.16\\26.37\\14.94\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}49.9\\45.11\\25.48\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}85.25\\77.08\\43.58\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}145.7\\131.7\\74.46\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}249.0\\225.1\\127.3\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\1.3\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.84\\1.32\\0.71\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.593\\2.475\\1.458\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.709\\4.206\\2.331\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.903\\7.167\\4.082\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}13.59\\12.27\\6.918\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}23.17\\20.96\\11.86\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}39.63\\35.83\\20.25\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}67.72\\61.23\\34.61\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}115.7\\104.6\\59.15\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}197.8\\178.8\\101.1\end{matrix}\right]\end{gather*}