Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\5\end{bmatrix}$.
Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.5\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.41\\1.79\\1.57\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.809\\2.28\\1.85\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.346\\3.374\\2.399\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.155\\5.106\\3.546\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.392\\7.91\\5.381\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}5.313\\12.3\\8.336\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}8.305\\19.18\\12.97\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}12.97\\29.94\\20.22\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}20.26\\46.73\\31.56\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}31.63\\72.96\\49.27\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\1.8\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.23\\4.05\\1.98\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.263\\6.847\\4.289\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.959\\11.08\\7.244\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.671\\17.48\\11.69\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}11.93\\27.41\\18.43\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}18.61\\42.85\\28.9\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}29.04\\66.95\\45.18\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}45.33\\104.5\\70.58\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}70.78\\163.2\\110.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}110.5\\254.9\\172.1\end{matrix}\right]\end{gather*}