Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.8\\1.2\\1.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.91\\1.05\\1.49\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.347\\1.74\\1.673\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.202\\2.502\\2.215\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.717\\3.526\\3.052\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}12.21\\4.941\\4.252\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}17.08\\6.914\\5.941\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}23.89\\9.672\\8.307\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}33.42\\13.53\\11.62\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}46.74\\18.92\\16.25\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}65.38\\26.47\\22.73\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\2.0\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}3.99\\1.37\\2.25\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.063\\2.42\\2.397\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}8.699\\3.506\\3.13\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}12.24\\4.951\\4.295\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}17.15\\6.942\\5.977\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}24.0\\9.716\\8.349\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}33.57\\13.59\\11.67\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}46.96\\19.01\\16.33\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}65.68\\26.59\\22.83\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}91.87\\37.19\\31.94\end{matrix}\right]\end{gather*}
Hide help