For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\0.6\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.03\\1.25\\1.72\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.521\\2.222\\2.719\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.035\\3.986\\4.941\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.506\\7.273\\9.165\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}17.66\\13.38\\16.99\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}32.67\\24.68\\31.42\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}60.37\\45.58\\58.08\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}111.5\\84.19\\107.3\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}206.0\\155.5\\198.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}380.6\\287.3\\366.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\0.4\\1.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.59\\1.23\\2.1\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.081\\2.424\\3.249\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.847\\4.5\\5.754\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.91\\8.295\\10.55\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}20.23\\15.3\\19.48\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}37.4\\28.25\\35.99\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}69.11\\52.18\\66.49\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}127.7\\96.38\\122.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}235.9\\178.1\\226.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}435.7\\328.9\\419.2\end{matrix}\right]\end{gather*}
Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 120\\4\end{bmatrix}$.