For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.7\\0.2\\0.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.62\\0.73\\0.45\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.749\\0.923\\0.877\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.042\\1.136\\1.126\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.398\\1.506\\1.438\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.844\\2.011\\1.908\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}2.439\\2.665\\2.537\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}3.233\\3.528\\3.361\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}4.283\\4.673\\4.451\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}5.675\\6.192\\5.897\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}7.518\\8.203\\7.813\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\0.1\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.45\\0.41\\0.27\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.509\\0.61\\0.535\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.6822\\0.7631\\0.7451\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.9201\\0.9955\\0.9579\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}1.219\\1.326\\1.26\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}1.612\\1.76\\1.674\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}2.135\\2.33\\2.22\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}2.829\\3.087\\2.94\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}3.748\\4.09\\3.895\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}4.965\\5.418\\5.16\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\5\end{bmatrix}$.
Hide help