For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\0.7\\1.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.27\\1.05\\2.05\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.912\\1.575\\3.223\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.887\\2.362\\4.9\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.348\\3.544\\7.393\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}6.538\\5.316\\11.12\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}9.819\\7.973\\16.71\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}14.74\\11.96\\25.09\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}22.12\\17.94\\37.65\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}33.18\\26.91\\56.49\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}49.78\\40.37\\84.75\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.5\\1.5\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.71\\2.25\\2.49\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.3\\3.375\\5.235\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.541\\5.063\\9.114\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.792\\7.594\\14.71\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}13.58\\11.39\\22.91\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}20.69\\17.09\\35.05\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}31.3\\25.63\\53.15\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}47.16\\38.44\\80.18\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}70.91\\57.67\\120.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}106.5\\86.5\\181.3\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\5\end{bmatrix}$.