For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\1.1\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}4.18\\1.85\\2.91\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}7.396\\3.274\\5.58\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}13.95\\6.052\\10.09\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}25.39\\11.08\\18.68\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}46.86\\20.39\\34.22\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}85.97\\37.45\\62.97\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}158.1\\68.85\\115.7\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}290.5\\126.5\\212.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}534.0\\232.5\\390.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}981.3\\427.4\\718.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\1.7\\0.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.7\\1.67\\2.87\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.948\\2.994\\4.622\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}11.83\\5.264\\9.078\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}22.63\\9.789\\16.25\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}40.93\\17.88\\30.2\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}75.75\\32.95\\55.24\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}138.8\\60.49\\101.7\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}255.4\\111.2\\186.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}469.2\\204.4\\343.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}862.5\\375.6\\631.1\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\3\end{bmatrix}$.