Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.5\\1.5\\1.1\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.61\\1.92\\2.59\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.853\\3.679\\4.97\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.154\\6.825\\9.533\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.3\\12.88\\18.12\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}25.08\\24.36\\34.39\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}47.44\\46.15\\65.2\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}89.84\\87.43\\123.6\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}170.2\\165.7\\234.2\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}322.6\\314.0\\443.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}611.3\\595.0\\841.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\1.4\\1.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.67\\2.19\\2.8\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.318\\4.027\\5.453\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.852\\7.5\\10.45\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}14.62\\14.14\\19.88\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}27.53\\26.74\\37.73\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}52.06\\50.64\\71.54\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}98.58\\95.94\\135.6\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}186.8\\181.8\\257.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}353.9\\344.5\\487.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}670.7\\652.9\\923.1\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 180\\3\end{bmatrix}$.