Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 150\\3\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\0.4\\1.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.56\\2.53\\2.66\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.183\\4.173\\5.688\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}8.046\\7.896\\10.4\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}14.98\\14.74\\19.46\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}27.98\\27.53\\36.35\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}52.25\\51.42\\67.89\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}97.59\\96.03\\126.8\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}182.3\\179.4\\236.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}340.4\\335.0\\442.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}635.8\\625.6\\826.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\0.6\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.71\\1.81\\2.06\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.061\\3.026\\4.122\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.849\\5.743\\7.555\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.88\\10.71\\14.15\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}20.33\\20.01\\26.42\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}37.98\\37.37\\49.34\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}70.93\\69.79\\92.16\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}132.5\\130.4\\172.1\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}247.4\\243.5\\321.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}462.1\\454.7\\600.4\end{matrix}\right]\end{gather*}
Hide help