For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\0.1\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.84\\1.11\\0.47\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.028\\1.784\\1.496\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.583\\3.508\\2.54\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.612\\6.937\\5.114\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.19\\13.34\\9.901\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}17.79\\26.06\\19.23\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}34.59\\50.61\\37.44\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}67.31\\98.45\\72.76\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}130.9\\191.4\\141.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}254.5\\372.3\\275.2\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.6\\1.6\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.32\\1.86\\1.82\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.056\\4.244\\2.876\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.318\\8.068\\6.074\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.85\\15.63\\11.54\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}20.78\\30.54\\22.55\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}40.55\\59.26\\43.84\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}78.83\\115.3\\85.22\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}153.3\\224.2\\165.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}298.1\\436.0\\322.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}579.6\\847.9\\626.8\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\4\end{bmatrix}$.