Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\5\end{bmatrix}$.
Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.7\\0.6\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.95\\1.64\\2.42\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.477\\2.556\\3.352\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.216\\3.976\\4.965\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.339\\6.022\\7.41\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}5.024\\9.087\\11.12\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}7.559\\13.68\\16.72\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}11.37\\20.59\\25.15\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}17.11\\30.98\\37.83\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}25.74\\46.61\\56.92\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}38.72\\70.12\\85.63\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\1.9\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.65\\1.36\\0.78\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.883\\1.844\\1.768\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.34\\2.504\\2.827\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.004\\3.682\\4.377\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.015\\5.482\\6.635\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}4.534\\8.223\\10.01\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}6.82\\12.36\\15.07\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}10.26\\18.58\\22.69\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}15.44\\27.95\\34.13\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}23.22\\42.05\\51.35\end{matrix}\right]\end{gather*}