Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\5\end{bmatrix}$.
Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\1.6\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.49\\4.82\\1.36\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.463\\8.02\\3.524\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.342\\14.08\\6.617\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.717\\24.99\\11.88\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}13.73\\44.47\\21.17\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}24.44\\79.14\\37.68\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}43.5\\140.8\\67.06\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}77.41\\250.7\\119.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}137.8\\446.2\\212.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}245.2\\794.1\\378.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\1.7\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.96\\3.14\\1.03\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.628\\5.294\\2.38\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.878\\9.327\\4.401\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.117\\16.57\\7.879\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.106\\29.49\\14.04\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}16.21\\52.48\\24.99\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}28.84\\93.4\\44.47\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}51.34\\166.2\\79.15\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}91.37\\295.9\\140.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}162.6\\526.6\\250.7\end{matrix}\right]\end{gather*}