Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 120\\3\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\0.4\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.9\\0.73\\1.05\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.08\\1.511\\1.782\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.609\\2.619\\3.18\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.712\\4.657\\5.54\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}4.68\\8.134\\9.721\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}8.173\\14.26\\17.01\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}14.29\\24.96\\29.78\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}25.01\\43.7\\52.12\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}43.78\\76.5\\91.24\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}76.63\\133.9\\159.7\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.9\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.28\\0.57\\1.12\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.812\\1.57\\1.577\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.352\\2.364\\2.995\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.473\\4.366\\5.093\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}4.292\\7.495\\9.008\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}7.551\\13.21\\15.71\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}13.2\\23.07\\27.54\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}23.12\\40.41\\48.18\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}40.47\\70.72\\84.36\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}70.85\\123.8\\147.7\end{matrix}\right]\end{gather*}