Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 100\\5\end{bmatrix}$.
Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\0.2\\1.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.99\\2.32\\1.43\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.329\\2.492\\2.941\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}8.544\\4.505\\4.499\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.95\\7.109\\7.424\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}22.64\\11.64\\12.01\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}36.79\\18.87\\19.54\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}59.76\\30.67\\31.73\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}97.1\\49.82\\51.56\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}157.8\\80.95\\83.77\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}256.3\\131.5\\136.1\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.7\\0.4\\0.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.43\\1.12\\0.73\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.579\\1.24\\1.421\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.157\\2.185\\2.194\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.784\\3.462\\3.61\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}11.01\\5.659\\5.845\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}17.9\\9.179\\9.505\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}29.07\\14.92\\15.44\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}47.24\\24.24\\25.08\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}76.75\\39.38\\40.75\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}124.7\\63.98\\66.21\end{matrix}\right]\end{gather*}