Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 60\\5\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\0.4\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.37\\1.47\\2.6\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.788\\2.596\\3.939\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.912\\4.769\\7.007\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.85\\8.656\\12.48\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}15.96\\15.68\\22.44\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}28.82\\28.36\\40.45\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}52.07\\51.28\\73.04\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}94.1\\92.7\\131.9\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}170.1\\167.6\\238.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}307.4\\302.9\\430.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.0\\1.7\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.03\\2.71\\2.05\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.069\\4.538\\5.021\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.625\\7.934\\10.16\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}14.0\\14.13\\19.22\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}25.48\\25.37\\35.4\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}46.19\\45.72\\64.5\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}83.59\\82.52\\117.0\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}151.2\\149.1\\211.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}273.3\\269.4\\383.0\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}494.0\\486.8\\692.4\end{matrix}\right]\end{gather*}
Hide help