Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\4\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\0.7\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.85\\1.96\\0.47\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.365\\2.441\\0.771\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.724\\2.771\\0.8789\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.12\\3.165\\1.002\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.565\\3.616\\1.145\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}4.073\\4.132\\1.309\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}4.654\\4.722\\1.496\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}5.318\\5.396\\1.709\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}6.077\\6.165\\1.953\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}6.944\\7.045\\2.231\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.3\\1.7\\1.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.15\\1.9\\0.57\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.215\\2.247\\0.709\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.526\\2.565\\0.8127\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.888\\2.93\\0.928\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.3\\3.348\\1.06\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}3.771\\3.826\\1.212\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}4.309\\4.372\\1.385\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}4.924\\4.995\\1.582\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}5.626\\5.708\\1.808\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}6.429\\6.522\\2.066\end{matrix}\right]\end{gather*}