Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 60\\1\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.0\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.04\\0.12\\0.2\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.152\\0.208\\0.248\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.28\\0.3608\\0.4928\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.489\\0.667\\0.8837\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}0.8981\\1.202\\1.599\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}1.622\\2.18\\2.901\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}2.941\\3.95\\5.254\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}5.328\\7.156\\9.521\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}9.653\\12.97\\17.25\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}17.49\\23.49\\31.26\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\0.5\\0.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.68\\0.79\\1.18\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.084\\1.551\\2.022\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.078\\2.747\\3.66\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}3.712\\5.0\\6.656\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}6.742\\9.055\\12.04\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}12.21\\16.41\\21.83\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}22.13\\29.73\\39.55\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}40.1\\53.86\\71.66\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}72.65\\97.59\\129.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}131.6\\176.8\\235.2\end{matrix}\right]\end{gather*}