For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.8\\0.0\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.6\\0.96\\0.72\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.096\\2.208\\2.16\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.533\\4.33\\4.118\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}8.983\\8.697\\8.306\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}18.02\\17.41\\16.62\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}36.07\\34.86\\33.28\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}72.24\\69.82\\66.65\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}144.7\\139.8\\133.5\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}289.7\\280.0\\267.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}580.1\\560.7\\535.3\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.8\\1.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.08\\1.52\\1.3\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.252\\3.288\\3.18\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.779\\6.511\\6.204\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.5\\13.06\\12.47\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}27.06\\26.15\\24.96\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}54.18\\52.37\\49.99\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}108.5\\104.9\\100.1\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}217.3\\210.0\\200.5\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}435.1\\420.6\\401.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}871.4\\842.2\\804.0\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\5\end{bmatrix}$.