For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\0.2\\1.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.13\\1.81\\1.24\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.159\\3.895\\2.348\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.341\\7.808\\4.686\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.714\\15.44\\9.28\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}18.36\\30.36\\18.27\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}35.37\\59.59\\35.88\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}68.75\\116.8\\70.37\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}134.2\\229.0\\137.9\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}262.5\\448.6\\270.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}513.8\\878.9\\529.4\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\0.2\\1.4\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.04\\1.88\\1.3\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.11\\4.022\\2.43\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.364\\8.038\\4.827\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.866\\15.87\\9.542\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}18.75\\31.19\\18.77\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}36.22\\61.19\\36.85\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}70.5\\120.0\\72.25\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}137.7\\235.1\\141.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}269.4\\460.6\\277.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}527.4\\902.3\\543.5\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\5\end{bmatrix}$.