For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.9\\0.4\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.95\\3.73\\3.62\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.199\\3.286\\6.833\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.966\\3.947\\9.951\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}2.973\\5.915\\14.47\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}4.38\\8.87\\21.33\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}6.456\\13.12\\31.52\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}9.532\\19.35\\46.55\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}14.07\\28.57\\68.72\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}20.78\\42.19\\101.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}30.69\\62.29\\149.8\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\1.4\\0.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.1\\0.8\\1.06\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.262\\0.536\\1.534\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.4378\\0.812\\2.12\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.6429\\1.287\\3.102\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}0.9419\\1.918\\4.593\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}1.39\\2.824\\6.788\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}2.052\\4.166\\10.02\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}3.031\\6.152\\14.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}4.475\\9.084\\21.85\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}6.607\\13.41\\32.26\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\5\end{bmatrix}$.