Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\4\end{bmatrix}$.
Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.2\\0.8\\0.3\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.75\\0.63\\1.19\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.647\\1.723\\1.388\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.419\\2.538\\3.367\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.724\\5.491\\5.687\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}13.19\\9.92\\11.74\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}25.63\\19.85\\21.99\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}49.84\\37.83\\43.38\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}96.72\\74.02\\83.42\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}187.8\\143.0\\162.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}364.4\\278.1\\314.8\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\1.6\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.83\\3.01\\2.94\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}6.066\\4.986\\5.905\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}12.15\\9.811\\10.71\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}23.91\\18.37\\21.12\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}46.61\\35.91\\40.34\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}90.65\\69.13\\78.69\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}176.0\\134.5\\152.1\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}341.7\\260.5\\295.7\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}663.2\\505.9\\573.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}1287.0\\981.3\\1113.0\end{matrix}\right]\end{gather*}