For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.4\\0.9\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.31\\1.61\\3.14\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.514\\2.752\\4.936\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.877\\4.616\\7.996\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.473\\7.688\\13.14\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}2.454\\12.77\\21.71\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}4.076\\21.19\\35.95\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}6.764\\35.14\\59.59\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}11.22\\58.28\\98.79\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}18.61\\96.64\\163.8\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}30.85\\160.3\\271.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.4\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.43\\2.17\\3.16\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.694\\3.496\\5.588\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}1.118\\5.732\\9.5\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}1.831\\9.463\\15.9\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}3.022\\15.67\\26.47\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}5.002\\25.96\\43.94\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}8.288\\43.04\\72.91\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}13.74\\71.36\\120.9\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}22.78\\118.3\\200.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}37.78\\196.2\\332.5\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 80\\4\end{bmatrix}$.