For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\1.1\\0.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.13\\1.67\\1.69\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.476\\4.483\\2.666\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.154\\7.696\\5.026\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.98\\14.04\\8.894\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}19.64\\25.03\\15.97\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}35.13\\44.84\\28.55\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}62.85\\80.2\\51.09\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}112.5\\143.5\\91.41\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}201.2\\256.8\\163.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}360.0\\459.4\\292.6\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.1\\2.0\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.7\\4.46\\2.17\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.123\\6.43\\4.325\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}9.214\\11.92\\7.456\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}16.52\\21.03\\13.46\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}29.56\\37.75\\24.01\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}52.89\\67.48\\43.0\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}94.63\\120.8\\76.91\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}169.3\\216.1\\137.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}303.0\\386.6\\246.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}542.1\\691.7\\440.6\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\4\end{bmatrix}$.
Hide help