For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.4\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.92\\2.38\\1.34\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.67\\4.226\\2.2\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.19\\7.289\\3.579\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.848\\12.31\\5.875\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}11.33\\20.59\\9.707\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}18.8\\34.3\\16.09\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}31.22\\57.04\\26.71\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}51.87\\94.8\\44.36\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}86.18\\157.5\\73.7\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}143.2\\261.7\\122.4\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\0.6\\0.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.56\\1.74\\1.3\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.238\\3.474\\1.96\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.561\\6.173\\3.102\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}5.85\\10.51\\5.049\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}9.694\\17.62\\8.322\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}16.1\\29.37\\13.79\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}26.74\\48.85\\22.88\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}44.43\\81.19\\38.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}73.81\\134.9\\63.12\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}122.6\\224.1\\104.9\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 70\\5\end{bmatrix}$.
Hide help