For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.3\\0.3\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.41\\1.4\\1.57\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.164\\2.421\\3.445\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.415\\4.33\\6.322\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.27\\7.754\\11.39\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}23.77\\13.89\\20.43\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}42.58\\24.89\\36.61\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}76.29\\44.6\\65.59\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}136.7\\79.9\\117.5\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}244.9\\143.2\\210.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}438.9\\256.5\\377.3\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\0.2\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.54\\1.45\\1.23\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.251\\2.459\\3.37\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.521\\4.387\\6.357\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}13.44\\7.852\\11.51\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}24.07\\14.07\\20.68\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}43.12\\25.2\\37.06\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}77.25\\45.15\\66.42\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}138.4\\80.9\\119.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}248.0\\145.0\\213.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}444.3\\259.7\\382.0\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\4\end{bmatrix}$.