Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 100\\5\end{bmatrix}$.
Hide help
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.7\\0.0\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.13\\1.4\\3.26\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.155\\2.562\\5.56\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.713\\4.404\\10.6\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}14.09\\8.299\\19.35\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}25.95\\15.2\\35.59\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}47.71\\27.95\\65.47\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}87.74\\51.42\\120.4\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}161.4\\94.55\\221.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}296.7\\173.9\\407.1\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}545.7\\319.8\\748.7\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\1.1\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.32\\0.78\\1.36\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.298\\1.108\\3.292\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.053\\2.526\\5.574\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.593\\4.407\\10.38\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}13.91\\8.146\\19.11\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}25.59\\15.01\\35.1\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}47.07\\27.57\\64.58\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}86.55\\50.72\\118.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}159.2\\93.27\\218.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}292.7\\171.5\\401.6\end{matrix}\right]\end{gather*}