For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.6\\0.1\\0.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.3\\0.96\\0.99\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.383\\1.54\\1.575\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.024\\2.315\\2.425\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}7.491\\3.46\\3.668\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}11.18\\5.171\\5.507\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}16.71\\7.728\\8.244\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}24.97\\11.55\\12.33\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}37.31\\17.26\\18.43\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}55.76\\25.79\\27.55\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}83.33\\38.55\\41.17\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.6\\1.5\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.71\\1.42\\1.9\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.235\\2.019\\2.427\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.435\\3.007\\3.373\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.679\\4.494\\4.893\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}14.5\\6.717\\7.228\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}21.69\\10.04\\10.75\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}32.43\\15.0\\16.04\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}48.47\\22.42\\23.96\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}72.44\\33.51\\35.79\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}108.3\\50.08\\53.49\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\5\end{bmatrix}$.
Hide help