For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.5\\2.0\\1.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.17\\3.19\\5.46\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.106\\6.179\\9.306\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}3.634\\11.16\\16.67\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}6.456\\20.02\\29.77\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}11.51\\35.82\\53.21\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}20.57\\64.03\\95.09\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}36.76\\114.5\\170.0\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}65.69\\204.6\\303.8\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}117.4\\365.6\\542.9\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}209.8\\653.4\\970.3\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.2\\1.5\\1.2\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.84\\2.28\\3.99\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.533\\4.47\\6.735\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.634\\8.077\\12.08\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.677\\14.5\\21.56\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}8.339\\25.94\\38.53\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}14.9\\46.37\\68.87\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}26.62\\82.89\\123.1\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}47.57\\148.1\\220.0\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}85.02\\264.8\\393.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}152.0\\473.2\\702.7\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 50\\3\end{bmatrix}$.
Hide help