For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.8\\1.6\\1.7\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.88\\0.64\\2.09\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.408\\0.256\\1.313\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.1688\\0.1024\\0.6065\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.06808\\0.04096\\0.2541\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}0.02729\\0.01638\\0.1031\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}0.01092\\0.006554\\0.04143\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}0.004369\\0.002621\\0.01659\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}0.001748\\0.001049\\0.00664\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}0.0006991\\0.0004194\\0.002656\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}0.0002796\\0.0001678\\0.001063\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.8\\0.5\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.08\\0.72\\2.75\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}0.468\\0.288\\1.571\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}0.1908\\0.1152\\0.6971\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}0.07668\\0.04608\\0.2879\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}0.03071\\0.01843\\0.1163\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}0.01229\\0.007373\\0.04664\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}0.004915\\0.002949\\0.01867\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}0.001966\\0.00118\\0.00747\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}0.0007864\\0.0004719\\0.002988\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}0.0003146\\0.0001887\\0.001195\end{matrix}\right]\end{gather*}
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 130\\4\end{bmatrix}$.