Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 110\\2\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.7\\1.3\\0.8\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.33\\0.85\\3.52\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.321\\2.129\\5.448\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}5.969\\3.482\\9.945\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}10.3\\6.216\\17.31\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}18.05\\10.85\\30.4\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}31.58\\19.02\\53.23\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}55.32\\33.32\\93.26\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}96.89\\58.36\\163.4\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}169.7\\102.2\\286.2\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}297.3\\179.1\\501.3\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.9\\1.3\\1.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.57\\1.21\\4.24\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}4.053\\2.573\\6.84\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}7.271\\4.318\\12.24\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}12.66\\7.646\\21.34\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}22.2\\13.36\\37.42\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}38.87\\23.42\\65.54\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}68.09\\41.01\\114.8\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}119.3\\71.84\\201.1\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}208.9\\125.8\\352.3\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}366.0\\220.5\\617.1\end{matrix}\right]\end{gather*}