Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 110\\3\end{bmatrix}$.
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.8\\1.7\\2.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}2.69\\4.13\\3.29\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}5.223\\7.298\\5.785\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}9.456\\13.15\\10.23\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}17.0\\23.5\\18.19\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}30.41\\41.96\\32.4\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}54.3\\74.87\\57.75\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}96.88\\133.5\\103.0\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}172.8\\238.2\\183.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}308.2\\424.7\\327.4\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}549.6\\757.4\\583.9\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}0.1\\0.7\\0.6\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}0.72\\1.07\\1.0\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}1.409\\2.067\\1.693\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}2.659\\3.741\\2.962\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}4.837\\6.724\\5.239\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}8.697\\12.03\\9.311\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}15.56\\21.47\\16.58\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}27.79\\38.31\\29.56\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}49.58\\68.34\\52.7\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}88.44\\121.9\\93.96\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}157.7\\217.4\\167.6\end{matrix}\right]\end{gather*}