For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.4\\0.9\\1.0\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.49\\2.02\\1.84\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}3.179\\4.082\\2.734\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}6.441\\7.987\\4.641\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}12.62\\15.46\\8.506\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}24.45\\29.81\\16.08\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}47.16\\57.42\\30.75\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}90.84\\110.5\\59.05\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}174.9\\212.7\\113.6\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}336.6\\409.4\\218.5\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}647.8\\787.9\\420.4\end{matrix}\right]\end{gather*}
For the initial condition $\vc{x}_0 = \left[\begin{matrix}1.0\\0.6\\0.9\end{matrix}\right]$, iterating the model forward 10 times gives: \begin{gather*}\vc{x}_1 = \left[\begin{matrix}1.0\\1.43\\1.5\end{matrix}\right], \vc{x}_2 = \left[\begin{matrix}2.245\\2.938\\2.1\end{matrix}\right], \vc{x}_3 = \left[\begin{matrix}4.631\\5.78\\3.447\end{matrix}\right], \vc{x}_4 = \left[\begin{matrix}9.133\\11.21\\6.226\end{matrix}\right], \vc{x}_5 = \left[\begin{matrix}17.73\\21.63\\11.71\end{matrix}\right]\\ \vc{x}_6 = \left[\begin{matrix}34.21\\41.66\\22.34\end{matrix}\right], \vc{x}_7 = \left[\begin{matrix}65.91\\80.2\\42.87\end{matrix}\right], \vc{x}_8 = \left[\begin{matrix}126.9\\154.4\\82.42\end{matrix}\right], \vc{x}_9 = \left[\begin{matrix}244.2\\297.1\\158.6\end{matrix}\right], \vc{x}_{10} = \left[\begin{matrix}470.1\\571.8\\305.1\end{matrix}\right]\end{gather*}
Hide help
Hint: the matrix equation will look something like $A\vc{x} = \vc{b}$, where $\vc{b} = \begin{bmatrix} 110\\3\end{bmatrix}$.