Math Insight

Gateway exam practice, version 8256

Math 1241, Fall 2020
Name:
Section:
Table/group #:
Total points: 10
Time limit: 50 minutes
  1. Solve the equation $z^{2} + z - 2 =0$ by factoring.

    The solutions are $z = $

    If there are more than one solution, separate answers by commas

  2. Let $u(x) = e^{2 x - 2}$ and $k(x) = - 8 x^{2} + x$. What is $u(k(x))$?

    $u(k(x)) = $

  3. Consider the function $f(t)=6(1.55)^t. \;\;$ Find the doubling time, i.e. find $t$ such that $f(t)= 2f(0).$

    Doubling time =

    (If you round your answer, include at least 4 significant digits.)

  4. Write the function $f(x)=24e^{ 2x+4 }$ in the form $f(x)=Ae^{kx}$.   What are the values of the parameters $A$ and $k$?

    $A=$
    , $k=$

  5. Let the variable $x$ be in the range \begin{align*} 1< x <7. \end{align*} If $y= 4 x + 4$, what is the range of the variable $y$?


    $\lt y \lt$

  6. Simplify the inequality below: \begin{align*} 1<\frac{8 x}{3} - 1<3 \end{align*}


    $\lt x \lt$

  7. Solve the equation $-5\left(x + 4\right) \left(x + 6\right) \left(x + 10\right)^{2} \left(6 x - 2\right) =0$.

    The solutions are $x = $

    If there are more than one solution, separate answers by commas

  8. Find the equation for the line through the point $(-7,6)$ with slope given by $m=- \frac{2}{9}$

    $y = $

  9. Solve for y. \begin{align*} 10 y - 8 = - 6 y - 7 \end{align*} $y = $

  10. Compute the value of $f(f(\frac{1}{ 5 }))$ for the function $f(x)=2x(1-x)$.

    $f(f(\frac{1}{ 5 })) =$