The derivative of a power function
Video Introduction
The derivative of a power function.
Summary
For a power function $$f(x)=x^p,$$ with exponent $p \ne 0$, its derivative is \begin{align} f'(x) = \diff{f}{x} = p x^{p-1}. \end{align} (For fractional $p$, we may need to restrict the domain to positive numbers, $x > 0$, so that the function is real valued.)
Using this formula, we calculate derivatives for small positive and negative powers as well as some fractional powers.
$p$ | $f(x)$ | $f'(x)$ or $\diff{f}{x}$ |
---|---|---|
$1$ | $x$ | $1$ |
$2$ | $x^2$ | $2x$ |
$3$ | $x^3$ | $3x^2$ |
$4$ | $x^4$ | $4x^3$ |
$p$ | $f(x)$ | $f'(x)$ or $\diff{f}{x}$ |
---|---|---|
$-1$ | $x^{-1}=\frac{1}{x}$ | $-x^{-2}=-\frac{1}{x^2}$ |
$-2$ | $x^{-2}=\frac{1}{x^2}$ | $-2x^{-3}=-\frac{2}{x^3}$ |
$-3$ | $x^{-3}=\frac{1}{x^3}$ | $-3x^{-4}=-\frac{3}{x^4}$ |
$-4$ | $x^{-4}=\frac{1}{x^4}$ | $-4x^{-5}=-\frac{4}{x^5}$ |
$p$ | $f(x)$ | $f'(x)$ or $\diff{f}{x}$ |
---|---|---|
$\frac{1}{2}$ | $x^{1/2}=\sqrt{x}$ | $\frac{1}{2}x^{-1/2}=\frac{1}{2\sqrt{x}}$ |
$\frac{1}{3}$ | $x^{1/3}=\sqrt[3]{x}$ | $\frac{1}{3}x^{-2/3}=\frac{1}{3\sqrt[3]{x^2}}$ |
$-\frac{1}{2}$ | $x^{-1/2}=\frac{1}{\sqrt{x}}$ | $-\frac{1}{2}x^{-3/2}=-\frac{1}{2\sqrt{x^3}}$ |
Thread navigation
Math 1241, Fall 2020
Math 201, Spring 22
Similar pages
- Derivatives of more general power functions
- The idea of the derivative of a function
- Derivatives of polynomials
- A refresher on the quotient rule
- A refresher on the product rule
- A refresher on the chain rule
- Related rates
- Intermediate Value Theorem, location of roots
- Derivatives of transcendental functions
- L'Hospital's rule
- More similar pages